Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.

Identifieur interne : 000006 ( Main/Exploration ); précédent : 000005; suivant : 000007

miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.

Auteurs : Zihui Zheng [Australie] ; Naiqi Wang [Australie] ; Meachery Jalajakumari [Australie] ; Leila Blackman [Australie] ; Enhui Shen [Australie] ; Saurabh Verma [Australie] ; Ming-Bo Wang [Australie] ; Anthony A. Millar [Australie]

Source :

RBID : pubmed:32041907

Abstract

MicroR159 (miR159) regulation of GAMYB expression is highly conserved in terrestrial plants; however, its functional role remains poorly understood. In Arabidopsis (Arabidopsis thaliana), although GAMYB-like genes are constitutively transcribed during vegetative growth, their effects are suppressed by strong and constitutive silencing by miR159. GAMYB expression occurs only if miR159 function is inhibited, which results in detrimental pleiotropic defects, questioning the purpose of the miR159-GAMYB pathway. Here, miR159 function was inhibited in tobacco (Nicotiana tabacum) and rice (Oryza sativa) using miRNA MIM159 technology. Similar to observations in Arabidopsis, inhibition of miR159 in tobacco and rice resulted in pleiotropic defects including stunted growth, implying functional conservation of the miR159-GAMYB pathway among angiosperms. In MIM159 tobacco, transcriptome profiling revealed that genes associated with defense and programmed cell death were strongly activated, including a suite of 22 PATHOGENESIS-RELATED PROTEIN (PR) genes that were 100- to 1,000-fold upregulated. Constitutive expression of a miR159-resistant GAMYB transgene in tobacco resulted in phenotypes similar to that of MIM159 tobacco and activated PR gene expression, verifying the dependence of the above-mentioned changes on GAMYB expression. Consistent with the broad defense response, MIM159 tobacco appeared immune to Phytophthora infection. These findings suggest that the tobacco miR159-GAMYB pathway functions in the biotic defense response, which becomes activated upon miR159 inhibition. However, PR gene expression was not upregulated in Arabidopsis or rice when miR159 was inhibited, suggesting that miR159-GAMYB pathway functional differences exist between species, or factors in addition to miR159 inhibition are required in Arabidopsis and rice to activate this broad defense response.

DOI: 10.1104/pp.19.00786
PubMed: 32041907
PubMed Central: PMC7140937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.</title>
<author>
<name sortKey="Zheng, Zihui" sort="Zheng, Zihui" uniqKey="Zheng Z" first="Zihui" last="Zheng">Zihui Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Naiqi" sort="Wang, Naiqi" uniqKey="Wang N" first="Naiqi" last="Wang">Naiqi Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jalajakumari, Meachery" sort="Jalajakumari, Meachery" uniqKey="Jalajakumari M" first="Meachery" last="Jalajakumari">Meachery Jalajakumari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blackman, Leila" sort="Blackman, Leila" uniqKey="Blackman L" first="Leila" last="Blackman">Leila Blackman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Enhui" sort="Shen, Enhui" uniqKey="Shen E" first="Enhui" last="Shen">Enhui Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Verma, Saurabh" sort="Verma, Saurabh" uniqKey="Verma S" first="Saurabh" last="Verma">Saurabh Verma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ming Bo" sort="Wang, Ming Bo" uniqKey="Wang M" first="Ming-Bo" last="Wang">Ming-Bo Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Millar, Anthony A" sort="Millar, Anthony A" uniqKey="Millar A" first="Anthony A" last="Millar">Anthony A. Millar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia tony.millar@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32041907</idno>
<idno type="pmid">32041907</idno>
<idno type="doi">10.1104/pp.19.00786</idno>
<idno type="pmc">PMC7140937</idno>
<idno type="wicri:Area/Main/Corpus">000280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000280</idno>
<idno type="wicri:Area/Main/Curation">000280</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000280</idno>
<idno type="wicri:Area/Main/Exploration">000280</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.</title>
<author>
<name sortKey="Zheng, Zihui" sort="Zheng, Zihui" uniqKey="Zheng Z" first="Zihui" last="Zheng">Zihui Zheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Naiqi" sort="Wang, Naiqi" uniqKey="Wang N" first="Naiqi" last="Wang">Naiqi Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jalajakumari, Meachery" sort="Jalajakumari, Meachery" uniqKey="Jalajakumari M" first="Meachery" last="Jalajakumari">Meachery Jalajakumari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blackman, Leila" sort="Blackman, Leila" uniqKey="Blackman L" first="Leila" last="Blackman">Leila Blackman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shen, Enhui" sort="Shen, Enhui" uniqKey="Shen E" first="Enhui" last="Shen">Enhui Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Verma, Saurabh" sort="Verma, Saurabh" uniqKey="Verma S" first="Saurabh" last="Verma">Saurabh Verma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ming Bo" sort="Wang, Ming Bo" uniqKey="Wang M" first="Ming-Bo" last="Wang">Ming-Bo Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Millar, Anthony A" sort="Millar, Anthony A" uniqKey="Millar A" first="Anthony A" last="Millar">Anthony A. Millar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia tony.millar@anu.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 2601</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MicroR159 (miR159) regulation of
<i>GAMYB</i>
expression is highly conserved in terrestrial plants; however, its functional role remains poorly understood. In Arabidopsis (
<i>Arabidopsis thaliana</i>
), although
<i>GAMYB-like</i>
genes are constitutively transcribed during vegetative growth, their effects are suppressed by strong and constitutive silencing by miR159. GAMYB expression occurs only if miR159 function is inhibited, which results in detrimental pleiotropic defects, questioning the purpose of the miR159-
<i>GAMYB</i>
pathway. Here, miR159 function was inhibited in tobacco (
<i>Nicotiana tabacum</i>
) and rice (
<i>Oryza sativa</i>
) using miRNA
<i>MIM159</i>
technology. Similar to observations in Arabidopsis, inhibition of miR159 in tobacco and rice resulted in pleiotropic defects including stunted growth, implying functional conservation of the miR159-
<i>GAMYB</i>
pathway among angiosperms. In
<i>MIM159</i>
tobacco, transcriptome profiling revealed that genes associated with defense and programmed cell death were strongly activated, including a suite of 22
<i>PATHOGENESIS-RELATED PROTEIN</i>
(
<i>PR</i>
) genes that were 100- to 1,000-fold upregulated. Constitutive expression of a miR159-resistant
<i>GAMYB</i>
transgene in tobacco resulted in phenotypes similar to that of
<i>MIM159</i>
tobacco and activated
<i>PR</i>
gene expression, verifying the dependence of the above-mentioned changes on
<i>GAMYB</i>
expression. Consistent with the broad defense response,
<i>MIM159</i>
tobacco appeared immune to
<i>Phytophthora</i>
infection. These findings suggest that the tobacco miR159-
<i>GAMYB</i>
pathway functions in the biotic defense response, which becomes activated upon miR159 inhibition. However,
<i>PR</i>
gene expression was not upregulated in Arabidopsis or rice when miR159 was inhibited, suggesting that miR159-
<i>GAMYB</i>
pathway functional differences exist between species, or factors in addition to miR159 inhibition are required in Arabidopsis and rice to activate this broad defense response.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32041907</PMID>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>182</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>2182-2198</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.19.00786</ELocationID>
<Abstract>
<AbstractText>MicroR159 (miR159) regulation of
<i>GAMYB</i>
expression is highly conserved in terrestrial plants; however, its functional role remains poorly understood. In Arabidopsis (
<i>Arabidopsis thaliana</i>
), although
<i>GAMYB-like</i>
genes are constitutively transcribed during vegetative growth, their effects are suppressed by strong and constitutive silencing by miR159. GAMYB expression occurs only if miR159 function is inhibited, which results in detrimental pleiotropic defects, questioning the purpose of the miR159-
<i>GAMYB</i>
pathway. Here, miR159 function was inhibited in tobacco (
<i>Nicotiana tabacum</i>
) and rice (
<i>Oryza sativa</i>
) using miRNA
<i>MIM159</i>
technology. Similar to observations in Arabidopsis, inhibition of miR159 in tobacco and rice resulted in pleiotropic defects including stunted growth, implying functional conservation of the miR159-
<i>GAMYB</i>
pathway among angiosperms. In
<i>MIM159</i>
tobacco, transcriptome profiling revealed that genes associated with defense and programmed cell death were strongly activated, including a suite of 22
<i>PATHOGENESIS-RELATED PROTEIN</i>
(
<i>PR</i>
) genes that were 100- to 1,000-fold upregulated. Constitutive expression of a miR159-resistant
<i>GAMYB</i>
transgene in tobacco resulted in phenotypes similar to that of
<i>MIM159</i>
tobacco and activated
<i>PR</i>
gene expression, verifying the dependence of the above-mentioned changes on
<i>GAMYB</i>
expression. Consistent with the broad defense response,
<i>MIM159</i>
tobacco appeared immune to
<i>Phytophthora</i>
infection. These findings suggest that the tobacco miR159-
<i>GAMYB</i>
pathway functions in the biotic defense response, which becomes activated upon miR159 inhibition. However,
<i>PR</i>
gene expression was not upregulated in Arabidopsis or rice when miR159 was inhibited, suggesting that miR159-
<i>GAMYB</i>
pathway functional differences exist between species, or factors in addition to miR159 inhibition are required in Arabidopsis and rice to activate this broad defense response.</AbstractText>
<CopyrightInformation>© 2020 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Zihui</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Naiqi</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-2554-4819</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jalajakumari</LastName>
<ForeName>Meachery</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blackman</LastName>
<ForeName>Leila</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0001-6309-9253</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Enhui</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verma</LastName>
<ForeName>Saurabh</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0002-1715-8280</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ming-Bo</ForeName>
<Initials>MB</Initials>
<Identifier Source="ORCID">0000-0002-3979-3103</Identifier>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Millar</LastName>
<ForeName>Anthony A</ForeName>
<Initials>AA</Initials>
<Identifier Source="ORCID">0000-0002-6668-1326</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia tony.millar@anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Physiol. 2020 Apr;182(4):1819-1820</RefSource>
<PMID Version="1">32253338</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32041907</ArticleId>
<ArticleId IdType="pii">pp.19.00786</ArticleId>
<ArticleId IdType="doi">10.1104/pp.19.00786</ArticleId>
<ArticleId IdType="pmc">PMC7140937</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 2014 Dec;19(12):750-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25242049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Sep;13(7):915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25600074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Mar 13;10(3):e1004232</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 May 20;18(10):758-762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18472421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):513-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1477404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2010;74(6):1315-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 May;9(3):385-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jun 1;62(5):742-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Feb;7(2):213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Aug;47(3):427-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16792694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17916625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 May 15;180:45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25899728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jun;29(6):1293-1304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28536099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2019 Jul 30;8(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31366066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 8;227(4691):1229-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 May;30(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 16;114(20):5277-5282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28461499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Jan 25;12(2):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22273771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Nov;7(11):1879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(5):1297-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24420567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 May 5;112(18):5850-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2013 Jul 8;23(13):1209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1658-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Aug 19;16(1):179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27542984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1710-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 May;111(5):791-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23404992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2014;312:1-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Sep;133(18):3539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Dec;29(5):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8555446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 08;5:3833</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24807620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14688295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2007 Jul;13(1):115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Nov 21;17(1):215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29162059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010 Oct 25;7:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20973960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2014;52:495-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25090478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Sep;80(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21996939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Oct;5(10):446-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Jul 22;6(7):e1001031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20661442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2018 Feb;123:149-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29245030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1453-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Silence. 2010 Oct 28;1(1):18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2011 Aug;18(8):1247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21475301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):705-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15722475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Dec;22(12):1056-1068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29032035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8346252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):757-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20699403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Jun;241(6):1405-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25697288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jul;174(3):1764-1778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28515145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2007 Jun 08;3:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Zheng, Zihui" sort="Zheng, Zihui" uniqKey="Zheng Z" first="Zihui" last="Zheng">Zihui Zheng</name>
</noRegion>
<name sortKey="Blackman, Leila" sort="Blackman, Leila" uniqKey="Blackman L" first="Leila" last="Blackman">Leila Blackman</name>
<name sortKey="Jalajakumari, Meachery" sort="Jalajakumari, Meachery" uniqKey="Jalajakumari M" first="Meachery" last="Jalajakumari">Meachery Jalajakumari</name>
<name sortKey="Millar, Anthony A" sort="Millar, Anthony A" uniqKey="Millar A" first="Anthony A" last="Millar">Anthony A. Millar</name>
<name sortKey="Shen, Enhui" sort="Shen, Enhui" uniqKey="Shen E" first="Enhui" last="Shen">Enhui Shen</name>
<name sortKey="Verma, Saurabh" sort="Verma, Saurabh" uniqKey="Verma S" first="Saurabh" last="Verma">Saurabh Verma</name>
<name sortKey="Wang, Ming Bo" sort="Wang, Ming Bo" uniqKey="Wang M" first="Ming-Bo" last="Wang">Ming-Bo Wang</name>
<name sortKey="Wang, Naiqi" sort="Wang, Naiqi" uniqKey="Wang N" first="Naiqi" last="Wang">Naiqi Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000006 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000006 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32041907
   |texte=   miR159 Represses a Constitutive Pathogen Defense Response in Tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32041907" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024